
CPS311 - COMPUTER ORGANIZATION

Two Short Examples Using the Simulated Multicycle Implementation

1. 	

 This program will add 1 to the contents of memory location 1000.  (The demo sets this 
location to 42 to begin with)

AL:	 lw	 $2, 1000($0)
Hex ML:	 address 00000000: 8c021000
 Cycle == 1:	 ALUInputA ← register[0], ALUInputB ← immediate value
 Cycle == 2:	 ALUOutput ← ALUInputA + ALUInputB
 Cycle == 3 (opcode == lw): register[2] ← M[ALUOutput]

AL:	 addi	 $2, $2, 1
Hex ML:	 address 00000004: 20420001
 Cycle == 1:	 ALUInputA ← register[2], ALUInputB ←  immediate value
 Cycle == 2:	 ALUOutput ← ALUInputA + ALUInputB
 Cycle == 3:	 register[2] ← ALUOutput

AL:	 sw	 $2, 1000($0)
Hex ML:	 address 00000008: ac021000
 Cycle == 1:	 ALUInputA ← register[0], ALUInputB ← immediate value
 Cycle == 2:	 ALUOutput ← ALUInputA + ALUInputB 
 Cycle == 3 	 (opcode == sw): M[ALUOutput] ← register[2]

2. 	

 Part 1 of Lab 5 - sum up the integers from 1 to n - n initially in $4; result ends up in $2 (Initial 
version without check for n = 0).   Since we don’t have a test driver, we’ll set the initial value of $4 
manually, and use a “marker” at end.  Nops are not needed for this non-pipelined example.

AL:	 addu	 $2, $0, $0
Hex ML:	 address 00000000: 00001021
 Cycle == 1:	 ALUInputA ← register[0], ALUInputB ← register[0] 
 Cycle == 2: 	 ALUOutput ← ALUInputA + ALUInputB 
 Cycle == 3: 	 register[2] ← ALUOuput

AL:   loop:	 addu	 $2, $2, $4
Hex ML:	 address 00000004: 00441021
 Cycle == 1:	 ALUInputA ← register[2], ALUInputB ← register[4] 
 Cycle == 2: 	 ALUOutput ← ALUInputA + ALUInputB
 Cycle == 3: 	 register[2] ← ALUOuput
	 	 	 	 [ The original program used addiu, 
AL:	 addi	 $4, $4, -1	   but simulator only has addi ]
Hex ML:	 address 00000008: 2084ffff
 Cycle == 1:	 ALUInputA ← register[4], ALUInputB ←  immediate value
 Cycle == 2:	 ALUOutput ← ALUInputA + ALUInputB
 Cycle == 3:	 register[4] ← ALUOutput

AL:	 bne	 $4, $0, loop
Hex ML:	 address 0000000c: 1480fffd
 Cycle == 1: 	 (opcode == bne && register[rs] != register[rt]) : 
	 PC ←  PC + sign-extend(I constant) * 4

"marker"	 address 00000010: 1000ffff (infinite loop)


